Clustering Large Collection of Biomedical Literature Based on Ontology-Enriched Bipartite Graph Representation and Mutual Refinement Strategy

نویسندگان

  • Illhoi Yoo
  • Xiaohua Hu
چکیده

In this paper we introduce a novel document clustering approach that solves some major problems of traditional document clustering approaches. Instead of depending on traditional vector space model, this approach represents a set of documents as bipartite graphs using domain knowledge in ontology. In this representation, the concepts of the documents are classified according to their relationships with documents that are reflected on the bipartite graph. Using the concept groups, documents are clustered based on the concepts’ contribution to each document. Through the mutual-refinement relationship with concept groups and document groups, the two groups are recursively refined. Our experimental results on MEDLINE articles show that our approach outperforms two leading document clustering algorithms: BiSecting K-means and CLUTO. In addition to its decent performance, our approach provides a meaningful explanation for each document cluster by identifying its most contributing concepts, thus helps users to understand and interpret documents and clustering results.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

خوشه‌بندی اسناد مبتنی بر آنتولوژی و رویکرد فازی

Data mining, also known as knowledge discovery in database, is the process to discover unknown knowledge from a large amount of data. Text mining is to apply data mining techniques to extract knowledge from unstructured text. Text clustering is one of important techniques of text mining, which is the unsupervised classification of similar documents into different groups. The most important step...

متن کامل

A Graph-Based Biomedical Literature Clustering Approach Utilizing Term's Global and Local Importance Information

In this article, we present a graph-based knowledge representation for biomedical digital library literature clustering. An efficient clustering method is developed to identify the ontology-enriched k-highest density term subgraphs that capture the core semantic relationship information about each document cluster. The distance between each document and the k term graph clusters is calculated. ...

متن کامل

Centralized Clustering Method To Increase Accuracy In Ontology Matching Systems

Ontology is the main infrastructure of the Semantic Web which provides facilities for integration, searching and sharing of information on the web. Development of ontologies as the basis of semantic web and their heterogeneities have led to the existence of ontology matching. By emerging large-scale ontologies in real domain, the ontology matching systems faced with some problem like memory con...

متن کامل

Protection or Privacy? Data Mining and Personal Data

A multiclass classification method based on output design p. 15 Regularized semi-supervised classification on manifold p. 20 Similarity-based sparse feature extraction using local manifold learning p. 30 Generalized conditional entropy and a metric splitting criterion for decision trees p. 35 RNBL-MN : a recursive naive Bayes learner for sequence classification p. 45 TRIPPER : rule learning usi...

متن کامل

A partition-based algorithm for clustering large-scale software systems

Clustering techniques are used to extract the structure of software for understanding, maintaining, and refactoring. In the literature, most of the proposed approaches for software clustering are divided into hierarchical algorithms and search-based techniques. In the former, clustering is a process of merging (splitting) similar (non-similar) clusters. These techniques suffered from the drawba...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006